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The effect of boundary conditions on the ‘critical dynamics’ at the onset of Taylor
vortices is investigated in a combined numerical and experimental study. Numerical
calculations of Navier–Stokes equations with ‘stress-free’ boundary conditions show
that the Landau amplitude equation provides a good model of the transient dynamics.
However, this rapidly breaks down when the ‘no-slip’ condition is approached.
Apparent ‘critical’ behaviour observed in experiments is shown to have a surprising
dependence on the length of the system.

1. Introduction
The interpretation of hydrodynamic instabilities in terms of low-order bifurcation

events has been a fruitful area for the application of modern mathematical ideas to
pattern formation. Examples of these are in Rayleigh–Bénard convection as discussed
by Cross & Hohenberg (1993), in Taylor–Couette flows discussed by diPrima &
Swinney (1981) and in electrohydrodynamic convection in nematic liquid crystals
as reported by Kramer & Pesch (1996). Bifurcations play an important rôle in the
organization of dynamics found at supercritical values of the control parameters and
an in-depth knowledge of the bifurcation set is necessary to understand complex
behaviour such as global bifurcations and chaos, as outlined by Mullin (1993).

In many of these applications the effects of physical imperfections are not taken
into account since close approximations to the mathematical idealization of perfect
symmetry can be achieved in experiments. Alternatively, improved models can be
constructed using imperfect bifurcation theory and these can be used to make closer
comparison with observation and test the robustness of the predictions of the perfect
models. It is clear that the symmetries of the models must be relevant to the physical
system for these procedures to have predictive power.

The hydrodynamic system we have chosen to study is Taylor–Couette flow between
rotating cylinders where the inner rotates and the outer is stationary. A cellular
pattern arises suddenly on a basic featureless flow as the Reynolds number Re is
increased. This event has formed a cornerstone of hydrodynamic stability theory since
the pioneering experimental and theoretical investigations of Taylor (1923) where he
found remarkable quantitative agreement between observation and prediction. In his
model the assumptions of cylinders of infinite lengthand a narrow gap between them
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were applied. In this case, the cellular Taylor vortex flow arises at a supercritical
pitchfork bifurcation from the trivial state of Couette flow at a critical Reynolds
number Rec. It may therefore be supposed that a good model of this event would
be provided by the Landau amplitude equation and it is this notion that we have
investigated. Evidence for a supercritical pitchfork bifurcation is provided by the
following:

(a) The onset of Taylor cells is sharp for almost all values of the aspect ratio
(non-dimensionalized cylinder length) in experiments. The exceptions are very short
cylinders and aspect ratios where there is an exchange of stability between neigh-
bouring modes as discussed by Mullin (1982).

(b) The observed value of Re for the onset of cells is in agreement with the
theoretical Rec to within experimental uncertainty for a wide range of aspect and
radius ratios of the cylinders as reviewed by diPrima & Swinney (1981).

(c) Detailed measurements of the onset of cells using laser Doppler velocimetry to
monitor the flow at mid-length of the cylinders shows close agreement with square-
root behaviour (See the review by diPrima & Swinney 1981 and references therein).

(d) The finite extent of cylinders in experimental studies gives rise to ‘end effects’
which take the form of Ekman vortices adjacent to the stationary ends of the
apparatus. These naturally produce a smoothed onset but it has been shown that
the resulting spatial variation can be modelled by the steady Ginzburg–Landau
equation as shown by Pfister & Rehberg (1981).

(e) Transient dynamics close to the onset of Taylor cells contain slowing-down
effects in ‘large’ systems as demonstrated in the experiments of Donnelly & Schwarz
(1963, 1965) and the numerical studies of Neitzel (1984). It has been conjectured
by Gollub & Freilich (1976) and Hirshfield & Rapaport (1998, 2000) that this is
the result of critical slowing down close to a pitchfork bifurcation. Since all of the
above evidence points to an imperfect supercritical pitchfork bifurcation it is natural
to enquire about the properties of the disconnected branch since the presence of an
unstable fixed point may have important consequences for the dynamics at higher
Re. Surprisingly, this issue was not addressed until the work of Benjamin, who
postulated and observed the so-called ‘anomalous modes’ in Benjamin (1978), and it
was discussed in detail in Benjamin & Mullin (1981).

The even ‘anomalous modes’ arise as a consequence of the disconnection of the
pitchfork of the ‘periodic’ model as pointed out by Schaeffer (1980). In this case,
the modes contain even numbers of cells all rotating in the opposite sense to the
normal one which evolves with a smooth increase of Re as described above.
Anomalous modes may also contain odd numbers of cells which fully disconnect in a
systematic way as the no-slip boundary condition is applied at the ends in numerical
calculations, as explored by Cliffe & Mullin (1985). Both sets of anomalous modes
have now been the subject of extensive experimental and numerical research over
wide parameter ranges and excellent quantitative agreement has been found between
observations and calculations, as reviewed by Cliffe, Kobine & Mullin (1992). Hence
their existence as essential features of the complete steady solution set is assured.

Perhaps the most surprising aspect of anomalous modes is that their lower limit of
stability is between a factor of 2 and 10 different from the onset of cells as shown by
Cliffe et al. (1992). Hence the appearance of cells in Taylor–Couette flow cannot be
modelled as the simple softening of a pitchfork bifurcation. Intriguingly, the onset is
distinctly sharp and yet the saddle-node of the disconnected branch may be an order
of magnitude different in Re. Moreover the onset of cells appears to show critical
behaviour of the type associated with the Landau amplitude equation. The Landau
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equation for the amplitude A of a critical mode is

τ0

dA

dt
= εA − A3

A2
0

, (1.1)

with ε = (Re − Rec)/Rec representing the relative distance from the critical point and
τ0 and A0 scaling factors for time and amplitude, respectively. A time constant may
be defined as T := τ0/ε, a final amplitude Af := A0

√
ε, and an initial amplitude

Ai = A(t = 0). The solution of equation (1.1) is given by

A(t) =
Af et/T

√
e2t/T + (Af /Ai)2 − 1

. (1.2)

This equation has been successfully applied to determine critical slowing down
at a Hopf bifurcation in Taylor–Couette flow by Pfister & Gerdts (1981) and in
magnetoconvection by Hof & Mullin (2001). It was also used by Gollub & Freilich
(1974) to model the onset of Taylor cells. Here we report on an experimental and
numerical investigation into the nonlinear response close to the onset of Taylor cells.

2. Experimental apparatus
The experiments were performed in a Taylor–Couette flow where viscous fluid

confined between two concentric cylinders was driven by rotation of the inner cylinder.
The dynamical parameter which was used as the primary control was the Reynolds
number which is defined by Re = (Ωirid)/ν, where the rotation rate of the inner
cylinder is Ωi , d = ro − ri is the gap between the cylinders and ri and ro denote the
radius of the inner and outer cylinders, respectively. The radius ratio η = ri/ro was
0.5. The second control parameter was the aspect ratio Γ = h/d , where h denotes the
height of the system. Γ was varied by moving the stationary collars which defined
the end boundary conditions. The inner cylinder was machined from stainless steel
and had a radius of ri = (12.50 ± 0.01) mm, while the outer cylinder was made from
optically polished glass with a radius of ro = (25.00 ± 0.01) mm. The eccentricity
of the cylinders was measured to ε � 0.005 mm. The axial location of the bottom
plate was fixed while the top plate could be positioned with an accuracy of 0.01 mm.
A phase-locked loop (PLL) circuit controlled the speed of the inner cylinder to an
accuracy of better than one part in 10−4 in the short term and 10−7 in the long-term
average.

The working fluid was silicone oil and its kinematic viscosity was determined to
be ν = 35.43 cSt by comparison with square-root behaviour at Γ = 20 obtained
from experimental data and from numerical calculations of Navier–Stokes equations.
The temperature of the fluid was held constant to within 0.01 K by circulating
thermostatically controlled oil through a jacket which surrounded the apparatus.
Further control was provided by an air-temperature controlled cabinet and the
laboratory was air conditioned.

The local vertical velocity was measured by a real-fringe laser-Doppler-velocimeter
(LDV) and processed using a phase-locked loop analogue tracker which produced
a voltage linearly proportional to the velocity. The time series were recorded via a
14-bit AD-converter and the data processing was performed off line on a computer.

3. Numerical method
A Galerkin finite-element discretization of the governing Navier–Stokes equations

in toroidal geometry was produced on a mesh of 20 × 160 elements with suitable
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corner refinements where appropriate. This was used to produce a set of nonlinear
differential-algebraic equations for the nodal values of the velocities and the pressure.
Continuation methods were used to trace out steady flows in the same way that has
been successful in previous studies of the Taylor problem by Cliffe et al. (1992). The
new feature here is that for calculations of transient behaviour, time-dependent terms
are included. The equations take the form of a differential-algebraic set because of
the incompressiblity constraint, as discussed by Gresho & Sani (1998).

The differential-algebraic equations were solved using a variable-order variable-
step-length backward-difference algorithm of Byrne & Hindmarsh (1975). The method
uses a predictor-corrector scheme to estimate the errors and chooses the order of the
method to obtain the largest possible time-step size while keeping the error in
the solution less than a prescribed tolerance. For the results reported here, the relative
error tolerance was set to 10−5, which gives very accurate solutions to the time-
dependent problem. Grid refinement tests were carried out to ensure that the spatial
discretization errors were acceptably small.

No-slip boundary conditions were used at the inner and outer cylinders. Calculations
were performed on a half-domain so that flows were assumed to be symmetric about
the mid-plane. At one end of the annulus, boundary conditions were applied in the
form of the model proposed by Schaeffer (1980), which involved the introduction
of a homotopy parameter τ ∈ [0, 1] which relates a solid stationary end (τ = 1) to
the case of impermeable, stress-free boundary conditions (τ = 0). A discussion of
the relationship between the latter boundary condition and full periodic boundary
conditions is given by Cliffe et al. (1992). It should be noted that increasing τ from
zero to one does not move the apparent critical value observed in experiments
from the bifurcation point of the periodic model.

If (u, v, w) are the velocity components with respect to cylindrical polar coordinates
in the region {(r, z) : r1 � r � r2, 0 � z � 1

2
h}, then the boundary conditions are

(u, v, w) = (0, 0, 0) for r = r2, 0 � z � 1
2
h, (3.1)

(u, v, w) = (0, 1, 0) for r = r1, 0 � z � 1
2
h, (3.2)

w = 0

(1 − τ )uz ± τu = 0

(1 − τ )vz ± τ{v − F (r)} = 0


 for z = 1

2
h, r1 � r � r2, (3.3)

w = 0, uz = 0, vz = 0 for z = 0, r1 � r � r2. (3.4)

The function F (r) is smooth and satisfies the criteria that F (r1) = 1 and F (r) = 0
for r � r1 + ξ , with 0 < ξ � r2 − r1, and is introduced to avoid the discontinuity in
the boundary conditions at the inner cylinder. In practice, the distance ξ is taken to
be approximately 1% of the gap between the two cylinders.

4. Results
We first show in figure 1 a direct comparison between numerical and experimental

time series for the onset and decay of cells for a 16-cell flow at Γ = 16 and Ref = 69.02,
where Ref is the set Reynolds number of the final state of the system. The measure
used to represent the flow is the radial velocity component at mid-height and mid-
gap. Steady-state solutions at Re = 63.74 and Re = 74.81 were used as the initial
conditions for both the measurements and calculations. For the accelerating flow
Re was impulsively changed from 63.74 to 69.02, and from 74.81 to 69.02 for the
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Figure 1. Comparison of experimental and numerical time series for the onset and decay in a
16-cell flow at Γ = 16 with Ref = 69.02. The upper trace was obtained using an intial value
of Re = 63.74 and the lower Re = 74.81.
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Figure 2. Time constants T obtained from fits of the Landau model to time series obtained
from numerical solutions of the Navier–Stokes equations for various values of the Schaeffer
homotopy parameter. The aspect ratio of the periodic domain is 16.

decelerating case with sufficient time being allowed for equilibrium to be reached
each time. It may be seen that there is excellent agreement between experiments
and numerics, giving confidence in both our numerical calculations and experimental
techniques. The obvious noise which is present on the experimental time traces is
purely instrumental and arises from the random arrival of particles in the measuring
volume of the LDV system.

The results shown in figure 2 are the time constants T obtained from least-squares
fits of equation (1.2) to time series such as those shown in figure 1. In this case they
were obtained from numerical solutions of the Navier–Stokes equations for various
values of the Schaeffer homotopy parameter, τ . The numerical results were calculated
using the method described above using equal steps in Re either side of Rec ≈ 68.2.
(Note that a more precise estimate of Rec = 68.189 was obtained in the latter stages of
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Figure 3. Time constants obtained from fits of the Landau theory to experimental time series
for (a) onset and (b) decay for 8 to 20 cells at the respective aspect ratios Γ = 8–20.

the investigation so the steps were not precisely equal on either side of Rec. However,
the error introduced is insignificant and is ≈ 0.04%.) When τ = 0, ‘periodic’ boundary
conditions (Schaeffer 1980) apply and both values of T are equal to within the fitting
error. However, when τ is increased the value of T associated with the appearance
of cells rapidly becomes much shorter than for the disappearance. We have curtailed
the range of τ displayed since there is very little further variation in T as the no-slip
boundary condition (τ = 1) is reached.

These results are both informative and interesting. They confirm that the Landau
equation provides a good model for the instability close to the bifurcation point but
this rapidly breaks down as the translational symmetry of the model is lost when τ is
increased. This result differs from the effects of τ on the steady bifurcation structure
where it is found that the limit point of the disconnected solution remains close to
Rec (τ = 0) and only approaches the experimental values when τ � 0.9 as discussed
by Cliffe & Mullin (1985). Hence the dynamics provide a more sensitive indicator of
the effects of moving towards realistic end conditions.

We next show in figure 3 sets of experimental estimates of T for four different
steady cellular states plotted as a function of Re. Each point on the graph is an
estimate of the time constant obtained from a fit of the Landau model to measured
time series with Rei = 63.74 for the onset and Rei = 74.81 for the decay, i.e. sets
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Figure 4. Two sequences of instantaneous radial velocity plots where Re was step changed
from 63.74 to 69.02 for the onset and 69.02 to 63.74 for the decay. The times of the plots were
chosen to provide optimal coverage of the most rapid changes: (a) onset 0, 100, 200, 300, 800
non-dimensional time units; (b) decay 0, 12.5, 25, 50, 200 non-dimensional time units. The
Schaeffer homotopy parameter τ was 0.1.
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of time series of the kind typified by the examples shown in figure 1. As expected
from the Landau model there is evidence for ‘slowing down’ as the Rec of the
periodic model is approached. The effect becomes more pronounced as the aspect
ratio of the system is increased. However, there is also an obvious disparity between
the timescales for the onset and decay in agreement with the numerical results of
figure 2. Moreover, the difference between the two timescales becomes greater as Γ is
increased.

The large disparity between the time constants suggests that different mechanisms
may be important in the onset and decay of cells. In order to investigate this we
performed a numerical study of the onset and decay of cells by stepping either side
of the critical point for the onset of cells in the periodic model. The investigation
was carried out for τ = 0.1 since we have shown in figure 2 that the results are
qualitatively unchanged for larger values of this parameter. The results are shown
in figure 4 in the form of two sets of instantaneous radial velocity profiles, one for
each step. We have chosen the non-dimensional times to highlight the salient features
during the periods of most rapid change.

The influence of the ends is clear for the onset, where the cells are seen to spread
from the boundaries towards the middle. On the other hand the decay is almost
uniform along the entire length of the cylinders, indicating that the ends play a minor
role in this process. Of course, when periodic boundary conditions apply both the onset
and decay will be spatially uniform and so, surprisingly, the decay in the finite problem
appears to mimic the periodic case more closely. This qualitative difference in the
two processes appears to be responsible for the large differences in the time constants
and, moreover, the experimental results of figure 3 suggest that the effects of the ends
on the dynamics of the onset become more important for longer cylinders.

It is interesting to note that behaviour analogous to that shown in figure 4 has
been discussed by Pomeau, Zaleski & Manneville (1985) in relation to a finite-size
model of Rayleigh–Bénard convection. They identified both wall and central modes,
which show different scaling laws for the respective growth rates. A possible future
direction of research may be to see if the dynamics uncovered here could be related
to the behaviour in models of this type.

5. Conclusions
We have investigated the transient dynamics associated with the onset of Taylor cells

and have confirmed by numerical investigations of the Navier–Stokes equations that
the Landau amplitude equation provides an appropriate description when ‘periodic’
boundary conditions are applied. By way of contrast, the application of no-slip bound-
ary conditions changes the dynamics radically and this finding is in agreement with
our experimental observations. Specifically, the onset of cells occurs on a timescale
which is an order of magnitude shorter than for their disappearance. The role of the
ends is evident in the spatial velocity field for onset but the collapse of the cellular
flow appears to be independent of length effects.

These results are in accord with previous observations of the static bifurcation
structure, where it is well established that the bifurcation of the model is effectively
destroyed in experiments despite the sharp onset of cells. Perhaps the most surprising
result of all is that the disparity in timescales between appearance and disappearance
of cells becomes greater for increasing aspect ratio. Long-timescale dynamics of this
type have also been found in travelling wave states in a model of convection by
Proctor, Tobias & Knobloch (2000).
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